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A Systematic Approach to the Derivation
of Constitutive Parameters of a

Perfectly Matched Absorber
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Abstract—In this letter, the constitutive parameters of a per-
fectly matched absorber are derived by imposing the condition
that the fields decay within the absorber in a required manner,
and it is shown that this absorber can be realized as a bian-
isotropic medium. This strategy is similar to that employed for
the realization of perfectly matched layers (PML’s), via the use
of anisotropic media, and the imposition of certain conditions
on the complex permittivity and permeability tensors. However,
unlike the PML, the bianisotropic media are desirable candidates
for physically realizableand passive absorbers. Furthermore, the-
oretically, such media have the potential of absorbing incident
waves of arbitrary frequency and direction of propagation with
no reflection.

I. INTRODUCTION

PERFECTLY matched layers (PML’s) have been widely
used for mesh truncation in finite methods, both in time-

and frequency-domain applications [1]–[3]. The PML region
absorbs an incident plane wave with no reflection irrespec-
tive of its angle of incidence, and the transmitted wave
is attenuated, within the layer, in the direction normal to
the interface. Anisotropic perfectly matched absorbers have
been introduced [2] as alternatives to the split-field PML
formulation of Berenger [4], where the fields within the region
are non-Maxwellian (which implies that this medium cannot be
realized physically). The permittivity and permeability tensors
of such matched absorbers satisfy

(1)

where is a diagonal matrix given by

(2)

where , and it is assumed that the PML/free
space interface is the plane . This formulation provides
a basis for the physical realization of a perfectly matched
absorber as a uniaxial magneto-dielectric material. One of
the elements of (2), however, has a negative conductivity,
and, hence, this material is active. This, in turn, precludes
its physical realization with passive inclusions.
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In a recent publication, Tretyakov [5] has suggested that
material absorbers can be synthesized with uniaxial Omega
composites. These media are bianisotropic, and are realized
by embedding -shaped metallic inclusions in a background
dielectric medium. The author of [5] has also pointed out that
it may be possible to realize a PML with fewer restrictions on
the permittivity and permeability tensors.

Another approach to mesh truncation in finite methods is
the transparent absorbing boundary (TAB) method [6], where
the open-space Maxwell’s equations are transformed into an
equivalent system with a closed homogeneous boundary. This
is achieved by modulating the amplitudes of the fields in the
computational domain to obtain reflection-free truncation of
this domain. In this letter, we demonstrate that the numerical
artifice embodied in TAB can be physically realized as a
medium with suitably defined constitutive parameters. We
show that the absorbing layer in TAB is a bianisotropic
medium, with spatially varying constitutive parameters that
are governed by the scalar function used to truncate the fields.

II. DERIVATION OF THE CONSTITUTIVE PARAMETERS

OF THE PERFECTLY MATCHED ABSORBING MEDIUM

In a linear medium, the constitutive relations are given by
[7]

(3)

(4)

where the dyadic parameters and depend on the
properties of the medium. Such a medium is known as a
bianisotropic medium since and are related to both
and . If the dyadics are functions of space variables, the
medium is inhomogeneous. If they depend on frequency, the
medium is said to be time-dispersive, and if they contain space
derivatives, the medium is space-dispersive, or nonlocal. These
definitions are important in the characterization of the medium
as an absorber.

Conventionally, treatises on matched absorbers begin with
either differential equations or postulates of the constitutive
relations of an anisotropic media and demonstrate that the
fields decay in such media in a desirable manner to provide
the absorption characteristics. In this work we begin, instead,
by postulating the nature of the field variation within the
absorbing medium and then derive its constitutive relations
in a systematic manner. Toward this end, we start by choosing
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a scalar modulation function that would yield the requisite
decay behavior of the field in the absorbing medium. Next,
we derive the second-order partial differential equations whose
solutions exhibit the desired decay behavior, and we follow
this up by rewriting these partial differential equations in the
format of Maxwell’s equations. As a final step, we deduce the
constitutive relations from the above Maxwell’s equations.

We start by assuming that the half-space is free space,
and that the field in this domain is a plane wave given by

(5)

where is the wave number and is the angle of incidence
measured from the axis. We stipulate that, in the region

, be given by

(6)

where the function satisfies the following conditions:

a) ;
b) is a monotonically decreasing function of(i.e.,

).

It is evident that condition a) assures the continuity of at
the interface , and b) is a statement of the fact that
should decay in the region . In [6], the function
is chosen to be

(7)

where is the length of the attenuation path andand
are integers such that . For this choice, it is evident
that the TAB medium is terminated by a perfectly conducting
wall at (i.e., ). Without any loss of
generality, however, we can assume that the field satisfies (6)
in the half-space , and this allows the function to
be defined over the entire positive half-space. For instance, we
can define , where is a positive constant.

The next step in our derivation is to determine the par-
tial differential equations whose solutions yield the desired

in both half-spaces. In the region , the plane
wave expression (5) obviously satisfies the Helmholtz equation

(8)

The partial differential equation satisfied by in the region
can be obtained by dividing both sides of (6) by

(assuming that for ), and operating
with ( ) on both terms. Noting that the right-hand side
vanishes, we obtain

(9)

From (9), Maxwell’s curl equations can now be extracted. We
derive, for instance, the following curl-type equations:

(10)

(11)

Next, we express (10) and (11) in a more compact form as

(12)

(13)

Finally, to obtain the constitutive relations, we further reduce
(12) and (13) to get

(14)

(15)

Noting that , we can now express the constitutive
relations in this medium as

(16)

(17)

A comparison of (16) and (17) with the constitutive relations
of a bianisotropic medium, given by (3) and (4), leads us to
the following results for the constitutive parameters:

(18)

(19)

where is the identity matrix. All entries of and are zero,
except for and , which are given by

(20)

Since, by definition, is a decreasing function of
; hence , which, in

turn, accounts for the loss mechanism in TAB.
Another important observation related to (20) is the appear-

ance of in the denominator, leading us to the conclusion
that the medium is time dispersive. This term implies that
larger values of the parameters and must be chosen at
lower frequencies to achieve effective attenuation in the field
quantities. For instance, if we let , (20) becomes

(21)

This is an important result, because it is well known that the
attenuation within the medium in an anisotropic PML depends
on frequency and the angle of incidence [2]. In TAB,
can be chosen to be independent of these two parameters.
However, in a nondispersive bianisotropic absorber, with
constant becomes

(22)

which is obviously, frequency dependent.
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III. CONCLUSIONS

In this letter, we have derived the constitutive relations of an
absorbing medium by postulating certain decay behavior of the
fields within the medium. Important contributions of our letter
are the derivation of the partial differential equations whose
solutions yield the required decaying field, and the extraction
of the constitutive relations from the Maxwell’s equations
derived from the above partial differential equations. We have
demonstrated that the constitutive relationships, thus obtained,
are identical to those of a bianisotropic medium. An important
consequence of this is that it offers us the potential for realizing
bianisotropic perfectly matched absorbers as generalizations
of anisotropic PML absorbers.

By showing that our equations are identical to those em-
ployed in the TAB method, we have established the equiva-
lence between the above approach and the bianisotropic media
concept. This enables us to control the decay behavior of the
transmitted field via the choice of the scalar truncation function

, which also determines the (or ) parameter of the
medium. In TAB, the permittivity and permeability parameters
are chosen to be and , but it should be possible to
generalize this and derive a perfectly matched absorber by

using a material with tensor parametersand , in conjunction
with the parameters and . The import of this result on
the physical realizability of perfectly matched bianisotropic
absorbers is currently under investigation by the authors.
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